Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Genomics ; 19(1): 593, 2018 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-30086719

RESUMO

BACKGROUND: Nematode sperm have unique and highly diverged morphology and molecular biology. In particular, nematode sperm contain subcellular vesicles known as membranous organelles that are necessary for male fertility, yet play a still unknown role in overall sperm function. Here we take a novel proteomic approach to characterize the functional protein complement of membranous organelles in two Caenorhabditis species: C. elegans and C. remanei. RESULTS: We identify distinct protein compositions between membranous organelles and the activated sperm body. Two particularly interesting and undescribed gene families-the Nematode-Specific Peptide family, group D and the here designated Nematode-Specific Peptide family, group F-localize to the membranous organelle. Both multigene families are nematode-specific and exhibit patterns of conserved evolution specific to the Caenorhabditis clade. These data suggest gene family dynamics may be a more prevalent mode of evolution than sequence divergence within sperm. Using a CRISPR-based knock-out of the NSPF gene family, we find no evidence of a male fertility effect of these genes, despite their high protein abundance within the membranous organelles. CONCLUSIONS: Our study identifies key components of this unique subcellular sperm component and establishes a path toward revealing their underlying role in reproduction.


Assuntos
Caenorhabditis/metabolismo , Proteínas de Helminto/metabolismo , Proteômica/métodos , Espermatozoides/metabolismo , Animais , Caenorhabditis elegans/metabolismo , Evolução Molecular , Masculino , Família Multigênica , Especificidade da Espécie
2.
Ecol Lett ; 16(4): 461-8, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23301667

RESUMO

The Red Queen hypothesis proposes that coevolving parasites select for outcrossing in the host. Outcrossing relies on males, which often show lower immune investment due to, for example, sexual selection. Here, we demonstrate that such sex differences in immunity interfere with parasite-mediated selection for outcrossing. Two independent coevolution experiments with Caenorhabditis elegans and its microparasite Bacillus thuringiensis produced decreased yet stable frequencies of outcrossing male hosts. A subsequent systematic analysis verified that male C. elegans suffered from a direct selective disadvantage under parasite pressure (i.e. lower resistance, decreased sexual activity, increased escape behaviour), which can reduce outcrossing and thus male frequencies. At the same time, males offered an indirect selective benefit, because male-mediated outcrossing increased offspring resistance, thus favouring male persistence in the evolving populations. As sex differences in immunity are widespread, such interference of opposing selective constraints is likely of central importance during host adaptation to a coevolving parasite.


Assuntos
Bacillus thuringiensis/fisiologia , Evolução Biológica , Caenorhabditis elegans/genética , Caenorhabditis elegans/microbiologia , Adaptação Fisiológica/genética , Animais , Feminino , Organismos Hermafroditas , Interações Hospedeiro-Parasita/genética , Interações Hospedeiro-Patógeno/genética , Masculino , Seleção Genética , Autofertilização , Caracteres Sexuais
3.
Front Zool ; 7: 28, 2010 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-21044286

RESUMO

BACKGROUND: Mating plugs that males place onto the female genital tract are generally assumed to prevent remating with other males. Mating plugs are usually explained as a consequence of male-male competition in multiply mating species. Here, we investigated whether mating plugs also have collateral effects on female fitness. These effects are negative when plugging reduces female mating rate below an optimum. However, plugging may also be positive when plugging prevents excessive forced mating and keeps mating rate closer to a females' optimum. Here, we studied these consequences in the gonochoristic nematode Caenorhabditis remanei. We employed a new CO2-sedation technique to interrupt matings before or after the production of a plug. We then measured mating rate, attractiveness and offspring number. RESULTS: The presence of a mating plug did not affect mating rate or attractiveness to roving males. Instead, females with mating plugs produced more offspring than females without copulatory plugs. CONCLUSIONS: Our experiment suggests that plugging might have evolved under male-male competition but represents a poor protection against competing males in our experiment. Even if plugging does not reduce mating rate, our results indicate that females may benefit from being plugged in a different sense than remating prevention.

4.
Front Zool ; 6: 23, 2009 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-19818155

RESUMO

BACKGROUND: When mating effort (e.g. via ejaculates) is high, males are expected to strategically allocate their resources depending on the expected fitness gains from a given mating opportunity. One mechanism to achieve strategic mating is the Coolidge effect, where male sexual motivation declines across repeated encounters with a familiar partner, but resuscitates when encountering a novel female. Experimental tests of male mate choice via mechanisms such as the Coolidge effect, however, remain scarce. Moreover, it is untested to date whether the Coolidge effect occurs in a sex-specific manner in simultaneous hermaphrodites, where the motivation to mate with a familiar partner may vary with previous mating activity in the male or female role. RESULTS: We exposed focal hermaphroditic freshwater snails, Biomphalaria glabrata, repeatedly to either a familiar or a novel partner. None of our proxies of sexual motivation (remating likelihood, mating delay, copulation duration) varied between the novel and familiar partner treatments. Moreover, the mating role taken during the first copulation did not affect the subsequent choice of mating roles in the familiar partner treatment as would be expected if focals preferred to avoid mating twice in the same role with a familiar partner. This indicates the absence of sex-specific effects of partner novelty. CONCLUSION: Our data indicate that mate novelty does affect neither overall sexual motivation nor the choice of mating roles in B. glabrata. Hence, male mate choice via a Coolidge effect appears inexistent in this invertebrate hermaphrodite. We discuss the possible roles of insufficient fitness gains for discriminatory behaviour in populations with frequent mate encounters as well as poor mate discrimination capacities. Our findings lend also no support to the novel prediction that sexual motivation in simultaneous hermaphrodites varies with the mating roles taken during previous copulations, calling for empirical investigation in further hermaphrodite systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...